安徽省大别山区温泉水化学特征与演化机制分析

    Chemical characteristics and evolutionary mechanism of hot spring water in Dabie Mountain area, Anhui Province

    • 摘要:
      研究目的 分析总结受构造控制的安徽大别山区温泉的水化学特征及其演化机制,有利于加深对独特地质背景下(造山带硅酸盐岩)水-岩相互作用的认识,同时可以为大别山区地热的勘探和合理开发利用提供科学依据。
      研究方法 在对研究区温泉水化学组分基本特征分析的基础上,综合利用Gibbs图、岩石风化图、离子比例系数、矿物稳定场图等方法对研究区温泉的水-岩相互作用进行研究。此外,还借助PHREEQC软件开展反向水文地球化学模拟工作,对地热水在循环过程中主要矿物的溶解及沉淀情况进行定量分析。
      研究结果 ①大别山区5个温泉的水化学类型以SO4−Na型和SO4·HCO3−Na型水为主,均为中低温、弱碱性温泉;②研究区温泉中稀土元素表现出明显的Eu正异常,轻稀土元素相对富集,中稀土元素其次,重稀土元素相对缺乏;③研究区温泉水化学组分主要受岩石风化作用的影响。温泉中Na+主要来自硅酸盐矿物(如钠长石、钠蒙脱石等)的溶滤,Ca2+来源于碳酸盐矿物和石膏的溶滤;SO42−的含量主要受到石膏溶解的影响;HCO3含量主要受硅酸盐和碳酸盐矿物溶解的影响。④模拟结果表明,雨水-地下热水路径上发生的水岩相互作用主要为钠长石、钙长石、萤石、石膏、黑云母和CO2的溶解,以及钠蒙脱石、方解石和白云石的沉淀,同时发生了Ca2+置换Na+的阳离子交替吸附作用。
      结论 雨水至地下热水路径属于地下水深循环,复杂的深部地层岩性及结构容易阻碍地下水径流,使地下水流速放缓,发生了充分的水-岩相互作用,完成了HCO3−Ca型雨水向SO4·HCO3−Na型和SO4−Na型弱碱性温泉的转化。

       

      Abstract:
      Objective The analysis and summary of the hydrochemical characteristics and evolution mechanism of the tectonically controlled hot springs in Dabie Mountain area, Anhui Province, is conducive to deepen the understanding of water−rock interaction under the unique geological background (orogenic silicic rocks), and can provide scientific basis for geothermal exploration and rational development and utilization in Dabie Mountain area.
      Methods Based on the analysis of the basic characteristics of the chemical components of the hot spring in the study area, the water−rock interaction of the hot spring in the study area is studied by comprehensive use of Gibbs map, rock weathering map, ion ratio coefficient and mineral stability field map. In addition, the reverse hydrogeochemical simulation work was carried out with the help of PHREEQC software to quantitatively analyze the dissolution and precipitation of major minerals during the geothermal water cycle.
      Results ① The hydrochemical types of the five hot springs in Dabie Mountain are mainly SO4−Na and SO4·HCO3−Na, all of which are moderate−low temperature and weak alkaline hot springs; ② Eu values in hot springs in the study area show obvious positive anomalies, with light rare earth elements relatively abundant, medium rare earth elements second, and heavy rare earth elements relatively lacking; ③ The chemical composition of hot spring water in the study area is mainly affected by rock weathering. Na+ mainly comes from the leaching of silicate rocks (such as albite and sodium montmorillonite), and Ca2+ comes from the leaching of carbonate rocks and gypsum. The content of SO42− is mainly affected by the dissolution of gypsum. The content of HCO3 is mainly affected by the dissolution of silicate rocks and carbonate rocks. ④ The water−rock interaction on the path of rainwater−deep circulation underground hot water is the dissolution of albite, anorthite, fluorite, gypsum, biotite , and CO2, and the precipitation of sodium montmorillonite, calcite , and dolomite, and the cation alternating adsorption of Ca2+ replacing Na+ occurs.
      Conclusions The path from rainwater to underground hot water belongs to the groundwater depth cycle. The complex lithology and structure of deep strata easily hinder groundwater runoff, slowing down groundwater velocity, and thus promote sufficient water−rock interaction in groundwater, completing the transformation of HCO3−Ca rainwater into SO4·HCO3−Na and SO4−Na weakly alkaline hot springs.

       

    /

    返回文章
    返回